Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 186-203, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000372

RESUMO

The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Nitratos , Pseudomonas putida , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Simulação de Acoplamento Molecular , Nitratos/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
2.
Matrix Biol ; 122: 33-45, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541633

RESUMO

Intestinal fibrosis is a prevalent complication of Crohn's disease (CD), characterized by excessive deposition of extracellular matrix (ECM), and no approved drugs are currently available for its treatment. Sirtuin 4 (SIRT4), a potent anti-fibrosis factor in mitochondria, has an unclear role in intestinal fibrosis. In this study, fibroblasts isolated from biopsies of stenotic ileal mucosa in CD patients were analyzed to identify the most down-regulated protein among SIRT1-7, and SIRT4 was found to be the most affected. Moreover, in vivo and in vitro models of intestinal fibrosis, SIRT4 expression was significantly decreased in a TGF-ß dependent manner, and its decrease was negatively associated with disease severity. SIRT4 impeded ECM deposition by inhibiting glutaminolysis, but not glycolysis, and α-ketoglutarate (α-KG) was identified as the key metabolite. Specifically, SIRT4 hinders SIRT5's stabilizing interaction with glutaminase 1 (GLS1), thereby facilitating the degradation of GLS1. KDM6, rather than KDM4, is a potential mediator for α-KG-induced transcription of ECM components, and SIRT4 enhances the enrichment of H3K27me3 on their promotors and enhancers. These findings indicate that the activation of TGF-ß signals decreases the expression of SIRT4 in intestinal fibrosis, and SIRT4 can facilitate GLS1 degradation, thereby resisting glutaminolysis and alleviating intestinal fibrosis, providing a novel therapeutic target for intestinal fibrosis.


Assuntos
Glutaminase , Sirtuínas , Humanos , Fibroblastos/metabolismo , Fibrose , Glutaminase/genética , Glutaminase/metabolismo , Intestinos , Proteínas Mitocondriais , Sirtuínas/genética , Fator de Crescimento Transformador beta/genética
3.
Adv Mater ; 35(47): e2304686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37540488

RESUMO

Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10-3 S cm-1 at 30 °C, ultrahigh Li+ transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm-2 , which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.

4.
Mol Nutr Food Res ; 67(11): e2200755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002873

RESUMO

SCOPE: The purpose of this research is to investigate the specific role of HSP90 paralogs in ulcerative colitis (UC), and to explore the mechanisms behind the inhibitory effects of galangin (Gal) on UC by inhibiting HSP90ß in vivo. METHODS AND RESULTS: In order to achieve this, publicly available gene expression data and molecular biology techniques are used. The results show that the expression of HSP90ß is significantly increased in the mucosal biopsies of UC patients and in the colons of colitis mice, and that there is a significant correlation between HSP90ß levels and disease severity. Then, Gal is found to bind directly to HSP90ß and downregulates the level of p-AKT, as well as the stability and oligomerization of HSP90ß, indicating Gal as an HSP90ß inhibitor. Moreover, the findings reveal that HSP90ß plays a critical role in controlling UC, and that Gal can alleviate colitis by inhibiting HSP90ß and perturbing fatty acid synthesis-mediated NLRP3 inflammasome activation. CONCLUSION: These results not only provide insight into the potential therapeutic use of Gal in the treatment of UC, but also offer new perspectives on the role of HSP90ß in this disease.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Colite/genética , Ácidos Graxos , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL
5.
Angew Chem Int Ed Engl ; 62(25): e202302767, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883964

RESUMO

Solid-state lithium-metal batteries are considered as the next generation of high-energy-density batteries. However, their solid electrolytes suffer from low ionic conductivity, poor interface performance, and high production costs, restricting their commercial application. Herein, a low-cost cellulose acetate-based quasi-solid composite polymer electrolyte (C-CLA QPE) was developed with a high Li+ transference number ( t L i + ${{t}_{{{\rm L}{\rm i}}^{+}}}$ ) of 0.85 and excellent interface stability. The prepared LiFePO4 (LFP)|C-CLA QPE|Li batteries exhibited excellent cycle performance with a capacity retention of 97.7 % after 1200 cycles at 1 C and 25 °C. The experimental results and Density Function Theory (DFT) simulation revealed that the partially esterified side groups in the CLA matrix contribute to the migration of Li+ and enhance electrochemical stability. This work provides a promising strategy for fabricating cost-effective, stable polymer electrolytes for solid-state lithium batteries.


Assuntos
Lítio , Polímeros , Metais , Celulose , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...